Novoselov, Ok. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. Ok. Gate-induced insulating state in bilayer graphene units. Nat. Mater. 7, 151–157 (2008).
Zhang, Y. et al. Direct commentary of a broadly tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
Mak, Ok. F., Lui, C. H., Shan, J. & Heinz, T. F. Commentary of an electric-field-induced band hole in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).
Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84, 205325 (2011).
Drummond, N. D., Zólyomi, V. & Fal’ko, V. I. Electrically tunable band hole in silicene. Phys. Rev. B 85, 075423 (2012).
Chu, T., Ilatikhameneh, H., Klimeck, G., Rahman, R. & Chen, Z. Electrically tunable bandgaps in bilayer MoS2. Nano Lett. 15, 8000–8007 (2015).
Kim, J. et al. Commentary of tunable band hole and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).
Dai, X., Li, W., Wang, T., Wang, X. & Zhai, C. Bandstructure modulation of two-dimensional WSe2 by electrical area. J. Appl. Phys. 117, 084310 (2015).
Deng, B. et al. Environment friendly electrical management of thin-film black phosphorus bandgap. Nat. Commun. 8, 14474 (2017).
Overweg, H. et al. Electrostatically induced quantum level contacts in bilayer graphene. Nano Lett. 18, 553–559 (2018).
Chen, P. et al. Band evolution of two-dimensional transition steel dichalcogenides underneath electrical fields. Appl. Phys. Lett. 115, 083104 (2019).
Yuan, H. et al. Excessive-density service accumulation in ZnO field-effect transistors gated by electrical double layers of ionic liquids. Adv. Funct. Mater. 19, 1046–1053 (2009).
Fujimoto, T. & Awaga, Ok. Electrical-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013).
Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to purposes of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).
Schmidt, E., Shi, S., Ruden, P. P. & Frisbie, C. D. Characterization of the electrical double layer formation dynamics of a steel/ionic liquid/steel construction. ACS Appl. Mater. Interfaces 8, 14879–14884 (2016).
Philippi, M., Gutiérrez-Lezama, I., Ubrig, N. & Morpurgo, A. F. Lithium-ion conducting glass ceramics for electrostatic gating. Appl. Phys. Lett. 113, 033502 (2018).
Zhang, H., Berthod, C., Berger, H., Giamarchi, T. & Morpurgo, A. F. Band filling and cross quantum capacitance in ion-gated semiconducting transition steel dichalcogenide monolayers. Nano Lett. 19, 8836–8845 (2019).
Gutiérrez-Lezama, I., Ubrig, N., Ponomarev, E. & Morpurgo, A. F. Ionic gate spectroscopy of 2D semiconductors. Nat. Rev. Phys. 3, 508–519 (2021).
Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).
Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).
Wang, S., Ha, M., Manno, M., Frisbie, C. D. & Leighton, C. Hopping transport and the Corridor impact close to the insulator–steel transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3, 1210 (2012).
Lu, J. M. et al. Proof for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).
Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically skinny MoS2 crystals. Nat. Nanotechnol. 11, 339–344 (2016).
Leighton, C. Electrolyte-based ionic management of purposeful oxides. Nat. Mater. 18, 13–18 (2019).
Ponomarev, E., Ubrig, N., Gutiérrez-Lezama, I., Berger, H. & Morpurgo, A. F. Semiconducting van der Waals interfaces as synthetic semiconductors. Nano Lett. 18, 5146–5152 (2018).
Reddy, B. A. et al. Artificial semimetals with van der Waals interfaces. Nano Lett. 20, 1322–1328 (2020).
Alam, M. H. et al. Lithium-ion electrolytic substrates for sub-1V high-performance transition steel dichalcogenide transistors and amplifiers. Nat. Commun. 11, 3203 (2020).
Nakajima, Ok., Katoh, T., Inda, Y. & Hoffman, B. Lithium Ion Conductive Glass Ceramics: Properties and Utility in Lithium Metallic Batteries (Ohara Company, 2010); http://oharacorp.com/pdf/ohara-presentation-ornl-symposium-10-08-2010.pdf
Zheliuk, O. et al. Josephson coupled Ising pairing induced in suspended MoS2 bilayers by double-side ionic gating. Nat. Nanotechnol. 14, 1123–1128 (2019).
Ji, H. et al. Thickness impact on low-power driving of MoS2 transistors in balanced double-gate fields. Nanotechnology 31, 255201 (2020).
Wang, Y. et al. Structural part transition in monolayer MoTe2 pushed by electrostatic doping. Nature 550, 487–491 (2017).
Zhang, F. et al. Electrical-field induced structural transition in vertical MoTe2– and Mo1−xWxTe2-based resistive reminiscences. Nat. Mater. 18, 55–61 (2019).
Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Corridor impact in two-dimensional transition steel dichalcogenides. Science 346, 1344–1347 (2014).
Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).
Zhu, Q., Tu, M. W.-Y., Tong, Q. & Yao, W. Gate tuning from exciton superfluid to quantum anomalous Corridor in van der Waals heterobilayer. Sci. Adv. 5, eaau6120 (2019).
Marrazzo, A., Gibertini, M., Campi, D., Mounet, N. & Marzari, N. Prediction of a large-gap and switchable Kane–Mele quantum spin Corridor insulator. Phys. Rev. Lett. 120, 117701 (2018).
Kim, D., Lee, C., Jang, B. G., Kim, Ok. & Shim, J. H. Drastic change of magnetic anisotropy in Fe3GeTe2 and Fe4GeTe2 monolayers underneath electrical area studied by density purposeful concept. Sci. Rep. 11, 17567 (2021).
Xu, C. et al. Electrical-field switching of magnetic topological cost in type-I multiferroics. Phys. Rev. Lett. 125, 037203 (2020).
Wang, S. et al. Tunable Schottky barrier in graphene/graphene-like germanium carbide van der Waals heterostructure. Sci. Rep. 9, 5208 (2019).
Wang, J. et al. Electrical field-tunable structural part transitions in monolayer tellurium. ACS Omega 5, 18213–18217 (2020).
Ke, C. et al. Tuning the digital, optical, and magnetic properties of monolayer GaSe with a vertical electrical area. Phys. Rev. Appl. 9, 044029 (2018).
Weintrub, B. I., Hsieh, Y.-L., Kirchhof, J. N. & Bolotin, Ok. I. Producing excessive electrical fields in 2D supplies by twin ionic gating. Preprint at https://arxiv.org/abs/2108.05797 (2021).
Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Quick decide up method for top of the range heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).
Domaretskiy, D., Ubrig, N., Gutiérrez-Lezama, I., Tran, M. Ok. & Morpurgo, A. F. Figuring out atomically skinny crystals with diffusively mirrored gentle. 2D Mater. 8, 045016 (2021).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software program challenge for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).
Giannozzi, P. et al. Superior capabilities for supplies modelling with QUANTUM ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
van Setten, M. J. et al. The PseudoDojo: coaching and grading a 85 factor optimized norm-conserving pseudopotential desk. Comput. Phys. Commun. 226, 39–54 (2018).
Sohier, T., Calandra, M. & Mauri, F. Density purposeful perturbation concept for gated two-dimensional heterostructures: theoretical developments and utility to flexural phonons in graphene. Phys. Rev. B 96, 075448 (2017).
Pizzi, G. et al. Wannier90 as a group code: new options and purposes. J. Phys. Condens. Matter 32, 165902 (2020).