Friday, October 7, 2022
HomeNanotechnologyNanobiotics towards antimicrobial resistance: harnessing the ability of nanoscale supplies and applied...

Nanobiotics towards antimicrobial resistance: harnessing the ability of nanoscale supplies and applied sciences | Journal of Nanobiotechnology


  • Antimicrobial Resistance Collaborators. World burden of bacterial antimicrobial resistance in 2019: a scientific evaluation. Lancet. 2022;399:629–55.

    Article 

    Google Scholar
     

  • Mahoney AR, Safaee MM, Wuest WM, Furst AL. The silent pandemic: emergent antibiotic resistances following the worldwide response to SARS-CoV-2. IScience. 2021;24: 102304.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jani Okay, Srivastava V, Sharma P, Vir A, Sharma A. Easy accessibility to antibiotics; unfold of antimicrobial resistance and implementation of 1 well being method in India. J Epidemiol Glob Well being. 2021;11:444–52.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative micro organism. Antibiotics. 2019;8:37.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Neill J. Overview on antimicrobial resistance: tackling drug-resistant infections globally: last report and proposals. Overview on antimicrobial resistance: tackling drug-resistant infections globally. 2016.

  • Peterson E, Kaur P. Antibiotic resistance mechanisms in micro organism: relationships between resistance determinants of antibiotic producers, environmental micro organism, and scientific pathogens. Entrance Microbiol. 2018;9:1–21.

    CAS 
    Article 

    Google Scholar
     

  • Nicoloff H, Hjort Okay, Levin BR, Andersson DI. The excessive prevalence of antibiotic heteroresistance in pathogenic micro organism is principally attributable to gene amplification. Nat Microbiol. 2019;4:504–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baker KS, Dallman TJ, Discipline N, Childs T, Mitchell H, Day M, et al. Horizontal antimicrobial resistance switch drives epidemics of a number of Shigella species. Nat Commun. 2018;9:1462.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Worley JN, Javkar Okay, Hoffmann M, Hysell Okay, Garcia-Williams A, Tagg Okay, et al. Genomic drivers of multidrug-resistant shigella affecting weak affected person populations in the USA and overseas. MBio. 2021;12: e03188-20.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosas NC, Lithgow T. Concentrating on bacterial outer-membrane remodelling to impression antimicrobial drug resistance. Developments Microbiol. 2022;30:544–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kao CY, Chen SS, Hung KH, Wu HM, Hsueh PR, Yan JJ, et al. Overproduction of lively efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa remoted from sufferers with bloodstream infections in Taiwan. BMC Microbiol. 2016;16(1):107.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife. 2017;6: e24905.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jellen-Ritter AS, Kern WV. Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF related to insertion component transposition in Escherichia coli mutants chosen with a fluoroquinolone. Antimicrob Brokers Chemother. 2001;45:1467–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wand ME, Darby EM, Blair JMA, Sutton JM. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and different biocides in Klebsiella spp. J Med Microbiol. 2022;71(3): 001496.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aminov R. Acquisition and unfold of antimicrobial resistance: a tet(X) case examine. Int J Mol Sci. 2021;22(8):3905.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huovinen P, Sundström L, Swedberg G, Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob Brokers Chemother. 1995;39:279–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pikis A, Donkersloot JA, Rodriguez WJ, Keith JM. A conservative amino acid mutation within the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneumoniae. J Infect Dis. 1998;178:700–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dale GE, Broger C, D’Arcy A, Hartman PG, DeHoogt R, Jolidon S, et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol. 1997;266:23–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Redgrave LS, Sutton SB, Webber MA, Piddock LJV. Fluoroquinolone resistance: mechanisms, impression on micro organism, and function in evolutionary success. Developments Microbiol. 2014;22:438–45.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez L, Pascual Á. Plasmid-mediated quinolone resistance: an replace. J Infect Chemother. 2010;17:149–82.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Floss HG, Yu TW. Rifamycin-mode of motion, resistance, and biosynthesis. Chem Rev. 2005;105:621–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Diaz R, Ramalheira E, Afreixo V, Gago B. Methicillin-resistant Staphylococcus aureus carrying the brand new mecC gene—a meta-analysis. Diagn Microbiol Infect Dis. 2016;84:135–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hegstad Okay, Mikalsen T, Coque TM, Werner G, Sundsfjord A. Cellular genetic components and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect. 2010;16:541–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Farhadi R, Saffar MJ, Monfared FT, Larijani LV, Kenari SA, Charati JY. Prevalence, threat components and molecular evaluation of vancomycin-resistant Enterococci colonization in a referral neonatal intensive care unit: a potential examine in northern Iran. J Glob Antimicrob Resist. 2022;S2213–7165(22):00122–9.


    Google Scholar
     

  • Roberts MC. Replace on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett. 2008;282:147–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Candela T, Marvaud JC, Nguyen TK, Lambert T. A cfr-like gene cfr(C) conferring linezolid resistance is frequent in Clostridium difficile. Int J Antimicrob Brokers. 2017;50:496–500.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kishk R, Soliman N, Nemr N, Eldesouki R, Mahrous N, Gobouri A, et al. Prevalence of aminoglycoside resistance and aminoglycoside modifying enzymes in Acinetobacter baumannii amongst intensive care unit sufferers, Ismailia, Egypt. Infect Drug Resist. 2021;14:143–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alcala A, Ramirez G, Solis A, Kim Y, Tan Okay, Luna O, et al. Structural and useful characterization of three Sort B and C chloramphenicol acetyltransferases from Vibrio species. Protein Sci. 2020;29:695–710.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morar M, Wright GD. The genomic enzymology of antibiotic resistance. Annu Rev Genet. 2010;44:25–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA, Badran AH, et al. Clinically related mutations in core metabolic genes confer antibiotic resistance. Science. 2021;371: eaba0862.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stalder T, Rogers LM, Renfrow C, Yano H, Smith Z, High EM. Rising patterns of plasmid-host coevolution that stabilize antibiotic resistance. Sci Rep. 2017;7:1–10.

    CAS 
    Article 

    Google Scholar
     

  • Westblade LJ, Errington J, Dorr T. Antibiotic tolerance. PLoS Pathog. 2020;16:10.

    Article 
    CAS 

    Google Scholar
     

  • Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ. Impact of tolerance on the evolution of antibiotic resistance below drug mixtures. Science. 2020;367:200–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sulaiman JE, Lam H. Evolution of bacterial tolerance below antibiotic therapy and its implications on the event of resistance. Entrance Microbiol. 2021;12: 617412.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic therapy. Nat Rev Microbiol. 2016;14:320–30.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan J, Bassler BL. Surviving as a group: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe. 2019;26:15–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, et al. Klebsiella pneumoniae biofilms and their function in illness pathogenesis. Entrance Cell Infect Microbiol. 2022;12: 877995.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent type of bacterial life. Nat Rev Microbiol. 2016;14:563–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goel N, Fatima SW, Kumar S, Sinha R, Khare SK. Antimicrobial resistance in biofilms: exploring marine actinobacteria as a possible supply of antibiotics and biofilm inhibitors. Biotechnol Rep (Amst). 2021;30: e00613.

    CAS 
    Article 

    Google Scholar
     

  • Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: extracellular elements in structured microbial communities. Developments Microbiol. 2020;28:668–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coleman SR, Blimkie T, Falsafi R, Hancock REW. Multidrug adaptive resistance of Pseudomonas aeruginosa swarming cells. Antimicrob Brokers Chemother. 2020;64(3):e01999-e2019.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bhattacharyya S, Walker DM, Harshey RM. Lifeless cells launch a ‘necrosignal’ that prompts antibiotic survival pathways in bacterial swarms. Nat Commun. 2020;11:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Jia Y, Yang Okay, Wang Z. Heterogeneous methods to remove intracellular bacterial pathogens. Entrance Microbiol. 2020;11:563.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vanrompay D, Nguyen TLA, Cutler SJ, Butaye P. Antimicrobial resistance in Chlamydiales, Rickettsia, Coxiella, and different intracellular pathogens. Microbiol Spectr. 2018;6(2):485–500.

    Article 

    Google Scholar
     

  • Zou J, Shankar N. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to advertise intracellular survival in macrophages. Cell Microbiol. 2016;18:831–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cano V, March C, Insua JL, Aguiló N, Llobet E, Moranta D, et al. Klebsiella pneumoniae survives inside macrophages by avoiding supply to lysosomes. Cell Microbiol. 2015;17:1537–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krell T, Matilla MA. Antimicrobial resistance: progress and challenges in antibiotic discovery and anti-infective remedy. Microb Biotechnol. 2022;15:70–8.

    PubMed 
    Article 

    Google Scholar
     

  • Shinu P, Mouslem AKA, Nair AB, Venugopala KN, Attimarad M, Singh VA, et al. Progress report: Antimicrobial drug discovery within the resistance period. Prescription drugs (Basel). 2022;15(4):413.

    CAS 
    Article 

    Google Scholar
     

  • Boyd NK, Teng C, Frei CR. Temporary overview of approaches and challenges in new antibiotic growth: a deal with drug repurposing. Entrance Cell Infect Microbiol. 2021;11: 684515.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Altarac D, Gutch M, Mueller J, Ronsheim M, Tommasi R, Perros M. Challenges and alternatives within the discovery, growth, and commercialization of pathogen-targeted antibiotics. Drug Discov As we speak. 2021;26:2084–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Plackett B. Why massive pharma has deserted antibiotics. Nature. 2020;586:S50–2.

    CAS 
    Article 

    Google Scholar
     

  • Lamberte LE, van Schaik W. Antibiotic resistance within the commensal human intestine microbiota. Curr Opin Microbiol. 2022;68: 102150.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kang M, Yang J, Kim S, Park J, Kim M, Park W. Incidence of antibiotic resistance genes and multidrug-resistant micro organism throughout wastewater therapy processes. Sci Complete Environ. 2022;811: 152331.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Name of the wild: antibiotic resistance genes in pure environments. Nat Rev Microbiol. 2010;8:251–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kållberg C, Salvesen Blix H, Laxminarayan R. Challenges in antibiotic R&D calling for a worldwide technique contemplating each short- and long-term options. ACS Infect Dis. 2019;5:1265–8.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19:23–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ndayishimiye J, Kumeria T, Popat A, Falconer JR, Blaskovich MAT. Nanomaterials: the brand new antimicrobial magic bullet. ACS Infect Dis. 2022;8:693–712.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma S, Kumar Okay, Thakur N, Chauhan S, Chauhan MS. The impact of form and measurement of ZnO nanoparticles on their antimicrobial and photocatalytic actions: a inexperienced method. Bull Mater Sci. 2020;43:20.

    CAS 
    Article 

    Google Scholar
     

  • Prasannakumar JB, Vidya YS, Anantharaju KS, Ramgopal G, Nagabhushana H, Sharma SC, et al. Bio-mediated route for the synthesis of form tunable Y2O3: Tb3+ nanoparticles: photoluminescence and antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc. 2015;151:131–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu S, Altenried S, Zogg A, Zuber F, Maniura-Weber Okay, Ren Q. Function of the floor nanoscale roughness of stainless-steel on bacterial adhesion and microcolony formation. ACS Omega. 2018;3:6456–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ferreyra Maillard APV, Espeche JC, Maturana P, Cutro AC, Hollmann A. Zeta potential past supplies science: purposes to bacterial methods and to the event of novel antimicrobials. Biochim Biophys Acta Biomembr. 2021;1863: 183597.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, et al. Investigation of antibacterial exercise and associated mechanism of a sequence of nano-Mg(OH)2. Appl Mater Interfaces. 2013;5:1137–42.

    CAS 
    Article 

    Google Scholar
     

  • He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ. Photogenerated cost carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial exercise. J Am Chem Soc. 2014;136:750–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rajivgandhi GN, Ramachandran G, Alharbi NS, Kadaikunnan S, Khaleed JM, Manokaran N, Li WJ. Substantial impact of Cr doping on the antimicrobial exercise of ZnO nanoparticles ready by ultrasonication course of. Mater Sci Eng, B. 2021;263: 114817.

    CAS 
    Article 

    Google Scholar
     

  • Saliani M, Jalal R, Goharshadi EK. Results of pH and temperature on antibacterial exercise of Zinc Oxide nanofluid towards Escherichia coli O157: H7 and Staphylococcus aureus, Jundishapur. J Microbiol. 2015;8:1–6.


    Google Scholar
     

  • Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine combat towards antibacterial resistance: an outline of the current pharmaceutical improvements. Pharmaceutics. 2020;12:142.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of bioactive metals/steel oxides and their nanocomposites with antibacterial medicine for biomedical purposes. Supplies (Basel). 2022;15(10):3602.

    CAS 
    Article 

    Google Scholar
     

  • Chung HJ, Castro CM, Im H, Lee H, Weissleder R. A magneto-DNA nanoparticle system for fast detection and phenotyping of micro organism. Nat Nanotechnol. 2013;8:369–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tripathi N, Goshisht MK. Latest advances and mechanistic insights into antibacterial exercise, antibiofilm exercise, and cytotoxicity of silver nanoparticles. ACS Appl Bio Mater. 2022;5:1391–463.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng X, Pei X, Xie W, Chen J, Li Y, Wang J, Gao H, Wan Q. pH-triggered size-tunable silver nanoparticles: focused aggregation for efficient bacterial an infection remedy. Small. 2022;18(22): e2200915.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Okkeh M, Bloise N, Restivo E, De Vita L, Pallavicini P, Visai L. Gold nanoparticles: can they be the following magic bullet for multidrug-resistant micro organism? Nanomaterials (Basel). 2021;11(2):312.

    CAS 
    Article 

    Google Scholar
     

  • Zheng Y, Jiang H, Wang X. Aspect-dependent antibacterial exercise of Au nanocrystals. Chin Chem Lett. 2020;31:3183–9.

    CAS 
    Article 

    Google Scholar
     

  • Rajendiran Okay, Zhao Z, Pei DS, Fu A. Antimicrobial exercise and mechanism of functionalized quantum dots. Polymers (Basel). 2019;11(10):1670.

    CAS 
    Article 

    Google Scholar
     

  • Leevy WM, Lambert TN, Johnson JR, Morris J, Smith BD. Quantum dot probes for micro organism distinguish Escherichia coli mutants and allow in vivo imaging. Chem Commun (Camb). 2008;20:2331–3.

    Article 
    CAS 

    Google Scholar
     

  • Courtney CM, Goodman SM, McDaniel JA, Madinger NE, Chatterjee A, Nagpal P. Photoexcited quantum dots for killing multidrug-resistant micro organism. Nat Mater. 2016;15:529–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pati R, Sahu R, Panda J, Sonawane A. Encapsulation of zinc-rifampicin complicated into transferrin-conjugated silver quantum-dots improves its antimycobacterial exercise and stability and facilitates drug supply into macrophages. Sci Rep. 2016;6:1–14.

    Article 
    CAS 

    Google Scholar
     

  • Usman MS, El Zowalaty ME, Shameli Okay, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed. 2013;8:4467.


    Google Scholar
     

  • Kulshrestha S, Khan S, Hasan S, Khan ME, Misba L, Khan AU. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo method. Appl Microbiol Biotechnol. 2016;100:1901–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fang F, Li M, Zhang J, Lee CS. Completely different methods for natural nanoparticle preparation in biomedicine. ACS Mater Lett. 2020;5:531–49.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y. Liposome as a supply system for the therapy of biofilm-mediated infections. J Appl Microbiol. 2021;131:2626–39.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cano A, Ettcheto M, Espina M, López-Machado A, Cajal Y, Rabanal F, et al. State-of-the-art polymeric nanoparticles as promising therapeutic instruments towards human bacterial infections. J Nanobiotechnol. 2020;18(1):156.

    Article 

    Google Scholar
     

  • Forier Okay, Raemdonck Okay, De Smedt SC, Demeester J, Coenye T, Braeckmans Okay. Lipid and polymer nanoparticles for drug supply to bacterial biofilms. J Management Launch. 2014;190:607–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alqahtani F, Aleanizy F, El Tahir E, Alhabib H, Alsaif R, Shazly G, et al. Antibacterial exercise of chitosan nanoparticles towards pathogenic N. gonorrhoea. Int J Nanomed. 2020;15:7877–87.

    CAS 
    Article 

    Google Scholar
     

  • Smiechowicz E, Niekraszewicz B, Kulpinski P, Dzitko Okay. Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica. Cellulose. 2018;25:3499–517.

    CAS 
    Article 

    Google Scholar
     

  • Yu Y, Mei L, Shi Y, Zhang X, Cheng Okay, Cao F, et al. Ag-Conjugated graphene quantum dots with blue light-enhanced singlet oxygen technology for ternary-mode highly-efficient antimicrobial remedy. J Mater Chem B. 2020;8:1371–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Solar H. Polymeric nanomaterials for environment friendly supply of antimicrobial brokers. Pharmaceutics. 2021;13(12):2108.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arana L, Gallego L, Alkorta I. Incorporation of antibiotics into stable lipid nanoparticles: a promising method to scale back antibiotic resistance emergence. Nanomaterials (Basel). 2021;11(5):1251.

    CAS 
    Article 

    Google Scholar
     

  • Korschelt Okay, Tahir MN, Tremel W. A step into the longer term: purposes of nanoparticle enzyme mimics. Chem Eur J. 2018;24:9703–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao F, Zhang L, Wang H, You Y, Wang Y, Gao N, et al. Defect-rich adhesive nanozymes as environment friendly antibiotics for enhanced bacterial inhibition. Angew Chem Int Ed. 2019;58:16236–42.

    CAS 
    Article 

    Google Scholar
     

  • Meng Y, Li W, Pan X, Gadd GM. Purposes of nanozymes within the surroundings. Environ Sci Nano. 2020;7:1305–18.

    CAS 
    Article 

    Google Scholar
     

  • Gao F, Shao T, Yu Y, Xiong Y, Yang L. Floor-bound reactive oxygen species producing nanozymes for selective antibacterial motion. Nat Commun. 2021;12:1–18.

    Article 
    CAS 

    Google Scholar
     

  • Santander SA, Vargas AP, Freitas SC, García C. A novel method to create an antibacterial floor utilizing titanium dioxide and a mix of dip-pen nanolithography and comfortable lithography. Sci Rep. 2018;8:1–10.


    Google Scholar
     

  • Agnihotri S, Mukherji S, Mukherji S. Immobilized silver nanoparticles improve contact killing and present highest efficacy: elucidation of the mechanism of bactericidal motion of silver. Nanoscale. 2013;5:7328–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, et al. Nano-strategies to combat multidrugresistant micro organism—“A battle of the titans.” Entrance Microbiol. 2018;9:1441.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant micro organism utilizing nanomaterials. Chem Soc Rev. 2019;48:415–27.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huo S, Jiang Y, Gupta A, Jiang Z, Landis RF, Hou S, et al. Totally Zwitterionic nanoparticle antimicrobial brokers by way of tuning of core measurement and ligand construction. ACS Nano. 2016;10:8732–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu X, Feng X, Werber JR, Chu C, Zucker I, Kim JH, et al. Enhanced antibacterial exercise by way of the managed alignment of graphene oxide nanosheets. Proc Natl Acad Sci USA. 2017;114:E9793–801.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A evaluation of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and organic mechanisms accountable for the noticed toxicity. Crit Rev Toxicol. 2010;40:328–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughes JB. Bacterial cell affiliation and antimicrobial exercise of a C60 water suspension. Environ Toxicol Chem. 2005;24:2757–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn Okay, Klabunde KJ. A multifunctional biocide/sporocide and photocatalyst primarily based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir. 2010;26:2805–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi JY, Kim KH, Choy KC, Oh KT, Kim KN. Photocatalytic antibacterial impact of TiO(2) movie fashioned on Ti and TiAg uncovered to Lactobacillus acidophilus. J Biomed Mater Res B Appl Biomater. 2007;80:353–9.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA. Antibacterial impact of gold nanoparticles towards Corynebacterium pseudotuberculosis. Int J Vet Sci Med. 2017;5:23–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen WJ, Tsai PJ, Chen YC. Useful Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling brokers for pathogenic micro organism. Small. 2008;4:485–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial exercise and mechanism of motion of zinc oxide nanoparticles towards Campylobacter jejuni. Appl Environ Microbiol. 2011;77:2325–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial management: potential purposes and implications. Water Res. 2008;42:4591–602.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, et al. Antibacterial carbon-based nanomaterials. Adv Mater. 2019;31: e1804838.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hsieh HS, Wu R, Jafvert CT. Gentle-independent reactive oxygen species (ROS) formation by way of electron switch from carboxylated single-walled carbon nanotubes in water. Environ Sci Technol. 2014;48:11330–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao Y, Ye C, Liu W, Chen R, Jiang X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial utility. Angew Chem Int Ed Engl. 2014;53:8127–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu JW, Yao Okay, Xu ZK. Nanomaterials with a photothermal impact for antibacterial actions: an outline. Nanoscale. 2019;11:8680–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6:9494–530.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma Okay, Li Y, Wang Z, Chen Y, Zhang X, Chen C, et al. Core-shell Gold [email protected] double hydroxide nanomaterial with extremely environment friendly photothermal conversion and its utility in antibacterial and tumor remedy. ACS Appl Mater Interfaces. 2019;11:29630–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang X, Su Okay, Tan L, Liu X, Cui Z, Jing D, et al. Fast and extremely efficient noninvasive disinfection by hybrid Ag/[email protected]2 nanosheets utilizing near-infrared mild. Appl Mater Interfaces. 2019;11:15014–27.

    CAS 
    Article 

    Google Scholar
     

  • Zhang W, Shi S, Wang Y, Yu S, Zhu W, Zhang X, et al. Versatile molybdenum disulfide primarily based antibacterial composites for in vitro enhanced sterilization and in vivo focal an infection remedy. Nanoscale. 2016;8:11642–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ansari SA, Nisar A, Fatma B, Khan W, Chaman M, Azam A, et al. Temperature dependence anomalous dielectric leisure in Co doped ZnO nanoparticles. Mater Res Bull. 2012;47:4161–8.

    CAS 
    Article 

    Google Scholar
     

  • Yu J, Zhang W, Li Y, Wang G, Yang L, Jin J, et al. Synthesis, characterization, antimicrobial exercise and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed Mater. 2014;10: 015001.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Singh R, Cheng S, Singh S. Oxidative stress-mediated genotoxic impact of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech. 2020;10:66.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Depan D, Misra RDK. On the figuring out function of community construction titania in silicone towards bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng C. 2014;34:221–8.

    CAS 
    Article 

    Google Scholar
     

  • Tavares A, Carvalho CM, Faustino MA, Neves MG, Tomé JP, Tomé AC, et al. Antimicrobial photodynamic remedy: examine of bacterial restoration viability and potential growth of resistance after therapy. Mar Medicine. 2010;8:91–105.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abrahamse H, Hamblin MR. New photosensitizers for photodynamic remedy. Biochem J. 2016;473:347–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chilakamarthi U, Giribabu L. Photodynamic remedy: previous, current and future. Chem Rec. 2017;17:775–802.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic remedy. Chem Soc Rev. 2016;45:6488–519.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Biel MA. Photodynamic remedy of bacterial and fungal biofilm infections. Strategies Mol Biol. 2010;635:175–94.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin JF, Li J, Gopal A, Munshi T, Chu YW, Wang JX, et al. Synthesis of photo-excited Chlorin e6 conjugated silica nanoparticles for enhanced anti-bacterial effectivity to beat methicillin-resistant Staphylococcus aureus. Chem Commun (Camb). 2019;55:2656–9.

    CAS 
    Article 

    Google Scholar
     

  • Park H, Lee J, Jeong S, Im BN, Kim MK, Yang SG, et al. Lipase-sensitive transfersomes primarily based on photosensitizer/polymerizable lipid conjugate for selective antimicrobial photodynamic remedy of pimples. Adv Healthc Mater. 2016;5:3139–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G. The poisonous results and mechanisms of CuO and ZnO nanoparticles. Supplies. 2012;5:2850–71.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang YW, Cao A, Jiang Y, Zhang X, Liu JH, Liu Y, et al. Superior antibacterial exercise of zinc oxide/graphene oxide composites originating from excessive zinc focus localized round micro organism. ACS Appl Mater Interfaces. 2014;6:2791–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial exercise and mechanism of motion of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jia H, Hou W, Wei L, Xu B, Liu X. The buildings and antibacterial properties of nano-SiO2 supported silver/zinc-silver supplies. Dent Mater. 2008;24:244–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial exercise of metals: mechanisms, molecular targets and purposes. Nat Rev Microbiol. 2013;11:371–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su G, Zhang X, Giesy JP, Musarrat J, Saquib Q, Alkhedhairy AA, et al. Comparability on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion utilizing a genome-wide toxicogenomics method. Environ Sci Pollut Res Int. 2015;22:17434–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial exercise of copper nanoparticles. Nanotechnology. 2014;25: 135101.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of motion of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33:2327–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niemirowicz Okay, Swiecicka I, Wilczewska AZ, Misztalewska I, Kalska-Szostko B, Bienias Okay, et al. Gold-functionalized magnetic nanoparticles limit progress of Pseudomonas aeruginosa. Int J Nanomed. 2014;9:2217–24.

    Article 
    CAS 

    Google Scholar
     

  • Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial brokers. Virulence. 2012;3:271–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Friedman AJ, Blecher Okay, Schairer D, Tuckman-Vernon C, Nacharaju P, Sanchez D, et al. Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione. Nitric Oxide. 2011;25:381–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Monteiro DR, Gorup LF, Takamiya AS, de Camargo ER, Filho AC, Barbosa DB. Silver distribution and launch from an antimicrobial denture base resin containing silver colloidal nanoparticles. J Prosthodont. 2012;21:7–15.

    PubMed 
    Article 

    Google Scholar
     

  • Lee SH, Jun BH. Silver nanoparticles: synthesis and utility for nanomedicine. Int J Mol Sci. 2019;20:865.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, et al. DNA deaminating skill and genotoxicity of nitric oxide and its progenitors. Science. 1991;254:1001–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ. Silver nanoparticles embedded in zeolite membranes: launch of silver ions and mechanism of antibacterial motion. Int J Nanomed. 2011;6:1833–52.

    CAS 

    Google Scholar
     

  • Ashmore D, Chaudhari A, Barlow B, Barlow B, Harper T, Vig Okay, et al. Analysis of E. coli inhibition by plain and polymer-coated silver nanoparticles. Rev Inst Med Trop Sao Paulo. 2018;60: e18.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Leung YH, Ng AM, Xu X, Shen Z, Gethings LA, Wong MT, et al. Mechanisms of antibacterial exercise of MgO: non-ROS mediated toxicity of MgO nanoparticles in the direction of Escherichia coli. Small. 2014;10:1171–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Nanocarriers for combating biofilms: benefits and challenges. J Appl Microbiol. 2022. https://doi.org/10.1111/jam.15640.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-based drug supply or concentrating on to eradicate micro organism for an infection mitigation: a evaluation of current advances. Entrance Chem. 2020;8:286.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liao CC, Yu HP, Yang SC, Alalaiwe A, Dai YS, Liu FC, Fang JY. Multifunctional lipid-based nanocarriers with antibacterial and anti inflammatory actions for treating MRSA bacteremia in mice. J Nanobiotechnol. 2021;19(1):48.

    CAS 
    Article 

    Google Scholar
     

  • Jina L, Liu X, Bian C, Sheng J, Track Y, Zhu Y. Fabrication linalool-functionalized hole mesoporous silica spheres nanoparticles for effectively improve bactericidal exercise. Chin Chem Lett. 2020;31:2137–41.

    Article 
    CAS 

    Google Scholar
     

  • Tian X, Wang P, Li T, Huang X, Guo W, Yang Y, Yan M, et al. Self-assembled pure phytochemicals for synergistically antibacterial utility from the enlightenment of conventional Chinese language drugs mixture. Acta Pharm Sin B. 2020;10:1784–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gounani Z, Asadollahi MA, Pedersen JN, Lyngsø J, Skov Pedersen J, et al. Mesoporous silica nanoparticles carrying a number of antibiotics present enhanced synergistic impact and improved biocompatibility. Colloids Surf B Biointerfaces. 2019;175:498–508.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niño-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F, Ruiz F. Molecular mechanisms of bacterial resistance to steel and steel oxide nanoparticles. Int J Mol Sci. 2019;20(11):2808.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, et al. Bacterial resistance to silver nanoparticles and overcome it. Nat Nanotechnol. 2018;13:65–71.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Salas-Orozco M, Niño-Martínez N, Martínez-Castañón GA, Méndez FT, Jasso MEC, Ruiz F. Mechanisms of resistance to silver nanoparticles in endodontic micro organism: a literature evaluation. J Nanomater. 2019;2019:7630316.


    Google Scholar
     

  • Srivastava P, Kowshik M. Mechanisms of steel resistance and homeostasis in haloarchaea. Archaea. 2013;2013: 732864.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang R, Carlsson F, Edman M, Hummelgård M, Jonsson BG, Bylund D, Olin H. Escherichia coli micro organism develop adaptive resistance to antibacterial ZnO nanoparticles. Adv Biosyst. 2018;2: e1800019.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, et al. Biomolecule-corona formation confers resistance of micro organism to nanoparticle-induced killing: implications for the design of improved nanoantibiotics. Biomaterials. 2019;192:551–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Finley PJ, Norton R, Austin C, Mitchell A, Zank S, Durham P. Unprecedented silver resistance in clinically remoted enterobacteriaceae: main implications for burn and wound administration. Antimicrob Brokers Chemother. 2015;59:4734–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Faghihzadeh F, Anaya NM, Astudillo-Castro C, Oyanedel-Craver V. Kinetic, metabolic and macromolecular response of micro organism to persistent nanoparticle publicity in steady tradition. Environ Sci Nano. 2018;5:1386–96.

    CAS 
    Article 

    Google Scholar
     

  • Graves JL Jr, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, et al. Fast evolution of silver nanoparticle resistance in Escherichia coli. Entrance Genet. 2015;6:42.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hachicho N, Hoffmann P, Ahlert Okay, Heipieper HJ. Impact of silver nanoparticles and silver ions on progress and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiol Lett. 2014;355:71–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feris Okay, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, et al. Electrostatic interactions have an effect on nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir. 2010;26:4429–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al. The impact of cost on the floor of silver nanoparticles on antimicrobial exercise towards gram-positive and gram-negative micro organism. J Nanomater. 2015;2015: 720654.

    Article 
    CAS 

    Google Scholar
     

  • Peter KS, Rosalyn KL, George LM, Kenneth JK. Steel oxide nanoparticles as bactericidal brokers. Langmuir. 2002;18:6679–86.

    Article 
    CAS 

    Google Scholar
     

  • Kumariya R, Sood SK, Rajput YS, Saini N, Garsa AK. Elevated membrane floor constructive cost and altered membrane fluidity results in cationic antimicrobial peptide resistance in Enterococcus faecalis. Biochim Biophys Acta. 2015;1848:1367–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive micro organism. FEMS Microbiol Rev. 2008;32:107–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol. 2005;187:5387–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sharma VK, Sayes CM, Guo B, Pillai S, Parsons JG, Wang C, et al. Interactions between silver nanoparticles and different steel nanoparticles below environmentally related situations: a evaluation. Sci Complete Environ. 2019;653:1042–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Louie SM, Ma R, Lowry GV. Transformations of nanomaterials within the surroundings. Entrance Nanosci. 2014;7:55–87.

    Article 

    Google Scholar
     

  • Li Z, Greden Okay, Alvarez PJJ, Gregory KB, Lowry GV. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol. 2010;44:3462–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo J, Gao SH, Lu J, Bond PL, Verstraete W, Yuan Z. Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1. ACS Appl Mater Interfaces. 2017;9:22298–307.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T. Cation diffusion facilitator household: construction and performance. FEBS Lett. 2015;589:1283–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Argüello JM, Padilla-Benavides T, Collins JM. Copper(I) ATPases: transport mechanism and mobile capabilities in micro organism. In: Encyclopedia of inorganic and bioinorganic chemistry. New York: Wiley; 2011. p. 1–8.


    Google Scholar
     

  • Imran M, Das KR, Naik MM. Co-selection of multi-antibiotic resistance in bacterial pathogens in steel and microplastic contaminated environments: an rising well being risk. Chemosphere. 2019;215:846–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ. Silver resistance in Gram-negative micro organism: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother. 2015;70:1037–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ellis DH, Maurer-Gardner EI, Sulentic CEW, Hussain SM. Silver nanoparticle antibacterial efficacy and resistance growth in key bacterial species. Biomed Phys Eng Categorical. 2018;5: 015013.

    Article 

    Google Scholar
     

  • Ramos-Zúñiga J, Gallardo S, Martínez-Bussenius C, Norambuena R, Navarro CA, Paradela A, Jerez CA. Response of the biomining Acidithiobacillus ferrooxidans to excessive cadmium concentrations. J Proteom. 2019;198:132–44.

    Article 
    CAS 

    Google Scholar
     

  • Palomo-Siguero M, Gutiérrez AM, Pérez-Conde C, Madrid Y. Impact of selenite and selenium nanoparticles on lactic micro organism: a multi-analytical examine. Microchem J. 2016;126:488–95.

    CAS 
    Article 

    Google Scholar
     

  • Chandrangsu P, Rensing C, Helmann JD. Steel homeostasis and resistance in micro organism. Nat Rev Microbiol. 2017;15:338–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang X, Yang F, Zhao J, Xu Y, Mao D, Zhu X, et al. Bacterial publicity to ZnO nanoparticles facilitates horizontal switch of antibiotic resistance genes. NanoImpact. 2018;10:61–7.

    CAS 
    Article 

    Google Scholar
     

  • Qiu Z, Shen Z, Qian D, Jin M, Yang D, Wang J, et al. Results of NaNO-TiO2 on antibiotic resistance switch mediated by RP4 plasmid. Nanotoxicology. 2015;9:895–904.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence. 2015;5:835–51.

    PubMed Central 
    Article 

    Google Scholar
     

  • Tang S, Zheng J. Antibacterial exercise of silver nanoparticles: structural results. Adv Healthc Mater. 2018;7:1701503.

    Article 
    CAS 

    Google Scholar
     

  • Čáp M, Váchová L, Palková Z. Reactive oxygen species within the signaling and adaptation of multicellular microbial communities. Oxid Med Cell Longev. 2012;2012: 976753.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rochat T, Nicolas P, Delumeau O, Rabatinová A, Korelusová J, Leduc A, et al. Genome-wide identification of genes instantly regulated by the pleiotropic transcription issue Spx in Bacillus subtilis. Nucl Acids Res. 2012;40:9571–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tkachenko AG. Stress responses of bacterial cells as mechanism of growth of antibiotic tolerance. Appl Biochem Microbiol. 2018;54:108–27.

    CAS 
    Article 

    Google Scholar
     

  • Dale AL, Lowry GV, Casman EA. Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol. 2013;47:12920–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sheng Z, Van Nostrand JD, Zhou J, Liu Y. The results of silver nanoparticles on intact wastewater biofilms. Entrance Microbiol. 2015;6:680.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peulen TO, Wilkinson KJ. Diffusion of nanoparticles in a biofilm. Environ Sci Technol. 2011;45:3367–73.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi O, Yu CP, Esteban Fernández G, Hu Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010;44:6095–103.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sahle-Demessie E, Tadesse H. Kinetics and equilibrium adsorption of nano-TiO2 particles on artificial biofilm. Surf Sci. 2011;605:1177–84.

    CAS 
    Article 

    Google Scholar
     

  • Lin Z, Monteiro-Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles, WIREs. Nanomed Nanobiotechnol. 2015;7:189–217.

    CAS 
    Article 

    Google Scholar
     

  • Zaidi S, Misba L, Khan AU. Nano-therapeutics: a revolution in an infection management in submit antibiotic period. Nanomed Nanotechnol Biol Med. 2017;13:2281–301.

    CAS 
    Article 

    Google Scholar
     

  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging brokers: concerns and caveats. Nanomedicine. 2008;3:703–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol. 2001;281:579–96.

    Article 

    Google Scholar
     

  • Kandi V, Kandi S. Antimicrobial properties of nanomolecules: potential candidates as antibiotics within the period of multi-drug resistance. Epidemiol Well being. 2015;37: e2015020.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ivask A, Juganson Okay, Bondarenko O, Mortimer M, Aruoja V, Kasemets Okay, et al. Mechanisms of poisonous motion of Ag, ZnO and CuO nanoparticles to chose ecotoxicological take a look at organisms and mammalian cells in vitro: a comparative evaluation. Nanotoxicology. 2014;8:57–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ansari MA, Khan HM, Khan AA, Ahmad MK, Mahdi AA, Pal R, et al. Interplay of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J Primary Microbiol. 2014;54:905–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, et al. Built-in metabolomic evaluation of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a fast in vivo screening methodology for nanotoxicity. Toxicol Appl Pharmacol. 2008;232:292–301.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poolman JT. Increasing the function of bacterial vaccines into life-course vaccination methods and prevention of antimicrobial-resistant infections. NPJ Vaccines. 2020;5:84.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bekeredjian-Ding I. Challenges for scientific growth of vaccines for prevention of hospital-acquired bacterial infections. Entrance Immunol. 2020;11:1755.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Osterloh A. Vaccination towards bacterial infections: challenges, progress, and new approaches with a deal with intracellular micro organism. Vaccines (Basel). 2022;10(5):751.

    CAS 
    Article 

    Google Scholar
     

  • Marques Neto LM, Kipnis A, Junqueira-Kipnis AP. Function of metallic nanoparticles in vaccinology: implications for infectious illness vaccine growth. Entrance Immunol. 2017;8:239.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Curley SM, Putnam D. Organic nanoparticles in vaccine growth. Entrance Bioeng Biotechnol. 2022;10: 867119.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fries CN, Curvino EJ, Chen JL, Permar SR, Fouda GG, Collier JH. Advances in nanomaterial vaccine methods to handle infectious ailments impacting world well being. Nat Nanotechnol. 2021;16(4):1–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fröhlich E. The function of floor cost in mobile uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577–91.

    Article 

    Google Scholar
     

  • Singh B, Maharjan S, Cho KH, Cui L, Park IK, Choi YJ, Cho CS. Chitosan-based particulate methods for the supply of mucosal vaccines towards infectious ailments. Int J Biol Macromol. 2018;110:54–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bivas-Benita M, van Meijgaarden KE, Franken KL, Junginger HE, Borchard G, Ottenhoff TH, et al. Pulmonary supply of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine. 2004;22(13–14):1609–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, et al. Rising vaccine nanotechnology: from protection towards an infection to sniping most cancers. Acta Pharm Sin B. 2022;12:2206–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hanson MC, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Make investments. 2015;125:2532–46.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ilyinskii PO, Roy CJ, O’Neil CP, Browning EA, Pittet LA, Altreuter DH, et al. Adjuvant-carrying artificial vaccine particles increase the immune response to encapsulated antigen and exhibit sturdy native immune activation with out inducing systemic cytokine launch. Vaccine. 2014;32:2882–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines towards infectious ailments. Entrance Immunol. 2018;9:2224.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gregory AE, Williamson ED, Prior JL, Butcher WA, Thompson IJ, Shaw AM, et al. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine. 2012;30:6777–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32:7098–107.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ruwona TB, Xu H, Li J, Diaz-Arévalo D, Kumar A, Zeng M, et al. Induction of protecting neutralizing antibody responses towards botulinum neurotoxin serotype C utilizing plasmid carried by PLGA nanoparticles. Hum Vaccines Immunother. 2016;12:1188–92.

    Article 

    Google Scholar
     

  • Safari D, Marradi M, Chiodo F, Th Dekker HA, Shan Y, Adamo R, et al. Gold nanoparticles as carriers for an artificial Streptococcus pneumoniae sort 14 conjugate vaccine. Nanomedicine. 2012;7:651–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muruato LA, Tapia D, Hatcher CL, Kalita M, Brett PJ, Gregory AE, et al. Use of reverse vaccinology within the design and building of nanoglycoconjugate vaccines towards Burkholderia pseudomallei. Clin Vaccines Immunol. 2017;24:e00206-e217.

    CAS 

    Google Scholar
     

  • Dakterzada F, Mobarez AM, Roudkenar MH, Mohsenifar A. Induction of humoral immune response towards Pseudomonas aeruginosa flagellin(1–161) utilizing gold nanoparticles as an adjuvant. Vaccine. 2016;34:1472–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Das S, Angsantikul P, Le C, Bao D, Miyamoto Y, Gao W, et al. Neutralization of cholera toxin with nanoparticle decoys for therapy of cholera. PLoS Negl Trop Dis. 2018;12: e0006266.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Danzig L. Meningococcal vaccines. Pediatr Infect Dis J. 2004;23:S285–92.

    PubMed 
    Article 

    Google Scholar
     

  • Wang N, Qian R, Liu T, Wu T, Wang T. Nanoparticulate carriers used as vaccine adjuvant supply methods. Crit Rev Ther Drug Carr Syst. 2019;36:449–84.

    Article 

    Google Scholar
     

  • Yu F, Wang J, Dou J, Yang H, He X, Xu W, et al. Nanoparticle-based adjuvant for enhanced protecting efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 towards Mycobacterium tuberculosis an infection. Nanomedicine. 2012;8:1337–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, et al. Section 2b managed trial of M72/AS01E vaccine to forestall tuberculosis. N Engl J Med. 2018;379:1621–34.

    Article 

    Google Scholar
     

  • Berzosa M, Pastor Y, Gamazo C, Irache JM. Improvement of a bacterial nanoparticle vaccine towards Escherichia coli. Strategies Mol Biol. 2022;2410:357–65.

    PubMed 
    Article 

    Google Scholar
     

  • Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and vaccine growth. Pharm Nanotechnol. 2020;8:6–21.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Irvine DJ, Hanson MC, Rakhra Okay, Tokatlian T. Artificial nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115:11109–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sridhar S, Brokstad KA, Cox RJ. Influenza vaccination methods: evaluating inactivated and stay attenuated influenza vaccines. Vaccines. 2015;3:373–89.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines towards antimicrobial resistance. Entrance Immunol. 2020;11:1048.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Micoli F, Bagnoli F, Rappuoli R, Serruto D. The function of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19:287–302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Matić Z, Šantak M. Present view on novel vaccine applied sciences to fight human infectious ailments. Appl Microbiol Biotechnol. 2022;106:25–56.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hirosue S, Kourtis IC, van der Vlies AJ, Hubbell JA, Swartz MA. Antigen supply to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: cross-presentation and T cell activation. Vaccine. 2010;28:7897–906.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaminskas LM, Porter CJH. Concentrating on the lymphatics utilizing dendritic polymers (dendrimers). Adv Drug Deliv Rev. 2011;63:890–900.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leleux J, Atalis A, Roy Okay. Engineering immunity: modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J Management Launch. 2015;219:610–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Singh B, Maharjan S, Cho KH, Cui LH, Park IK, Choi YJ, et al. Chitosan-based particulate methods for the supply of mucosal vaccines towards infectious ailments. Int J Biol Macromol. 2018;110:54–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baker SJ, Payne DJ, Rappuoli R, De Gregorio E. Applied sciences to handle antimicrobial resistance. Proc Natl Acad Sci USA. 2018;115:12887–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rappuoli R, Bloom DE, Black S. Deploy vaccines to combat superbugs. Nature. 2017;552:165–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bilukha OO, Rosenstein N. Prevention and management of meningococcal illness. Suggestions of the Advisory Committee on Immunization Practices (ACIP). Morb Mort Wkly Rep Recomm Rep. 2005;54:1–21.


    Google Scholar
     

  • Delany I, Rappuoli R, Gregorio ED. Vaccines for the twenty first century. EMBO Mol Med. 2014;6:708–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khan O, Chaudary N. The usage of amikacin liposome inhalation suspension (Arikayce) within the therapy of refractory nontuberculous mycobacterial lung illness in adults. Drug Des Devel Ther. 2020;14:2287–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cipolla D, Blanchard J, Gonda I. Improvement of liposomal ciprofloxacin to deal with lung infections. Pharmaceutics. 2016;8(1):6.

    PubMed Central 
    Article 

    Google Scholar
     

  • Bricks LF, Berezin E. Influence of pneumococcal conjugate vaccine on the prevention of invasive pneumococcal ailments. J Pediatr (Rio J). 2006;82:S67–74.

    Article 

    Google Scholar
     

  • Narang A, Chang RK, Hussain MA. Pharmaceutical growth and regulatory concerns for nanoparticles and nanoparticulate drug supply methods. J Pharm Sci. 2013;102:3867–82.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hua S, De Matos MBC, Metselaar JM, Storm G. Present developments and challenges within the scientific translation of nanoparticulate nanomedicines: Pathways for translational growth and commercialization. Entrance Pharmacol. 2018;9:790.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz Y, Tamarkin L, Desai N. Nanomedicines: addressing the scientific and regulatory hole. Ann N Y Acad Sci. 2014;1313:35–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar Teli M, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: going small means aiming massive. Curr Pharm Des. 2010;16:1882–92.

    Article 

    Google Scholar
     

  • Murday JS, Siegel RW, Stein J, Wright JF. Translational nanomedicine: standing evaluation and alternatives. Nanomed Nanotechnol Biol Med. 2009;5:251–73.

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments