Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo choice, content material, launch, and uptake. Cell Mol Neurobiol. 2016;36(3):301–12.
van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–28.
Lee H, Zhang D, Zhu Z, Dela Cruz CS, Jin Y. Epithelial cell-derived microvesicles activate macrophages and promote irritation by way of microvesicle-containing microRNAs. Sci Rep. 2016;6:35250.
Leavitt RJ, Limoli CL, Baulch JE. miRNA-based therapeutic potential of stem cell-derived extracellular vesicles: a secure cell-free remedy to ameliorate radiation-induced mind harm. Int J Radiat Biol. 2019;95(4):427–35.
Khosravi M, Mirsamadi ES, Mirjalali H, Zali MR. Isolation and capabilities of extracellular vesicles derived from parasites: the promise of a New Period in immunotherapy, vaccination, and analysis. Int J Nanomed. 2020;15:2957–69.
Hosseinkhani B, van den Akker N, D’Haen J, Gagliardi M, Struys T, Lambrichts I, Waltenberger J, Nelissen I, Hooyberghs J, Molin DGM, et al. Direct detection of nano-scale extracellular vesicles derived from inflammation-triggered endothelial cells utilizing floor plasmon resonance. Nanomed Nanotechnol Biol Med. 2017;13(5):1663–71.
Stritzke F, Poeck H, Heidegger S. In Vivo immunogenicity screening of tumor-derived extracellular vesicles by movement cytometry of splenic T Cells. J Vis Exp JoVE. 2021. https://doi.org/10.3791/62811.
Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X. Mesenchymal stem cell-derived exosomes: a promising organic instrument in nanomedicine. Entrance Pharmacol. 2020;11: 590470.
Han CB, An SC. Injectable bioactive glass within the restoration of oral bone defect. Eur Rev Med Pharmacol Sci. 2016;20(9):1665–8.
Lee YC, Chan YH, Hsieh SC, Lew WZ, Feng SW. Evaluating the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect mannequin. Int J Mol Sci. 2019;20(20):5015.
Sculean A, Stavropoulos A, Bosshardt DD. Self-regenerative capability of intra-oral bone defects. J Clin Periodontol. 2019;46(Suppl 21):70–81.
Cui Y, Hu X, Zhang C, Wang Okay. The genetic polymorphisms of key genes in WNT pathway (LRP5 and AXIN1) was related to osteoporosis susceptibility in Chinese language Han inhabitants. Endocrine. 2021. https://doi.org/10.1007/s12020-021-02866-z.
Colitti M, Sgorlon S, Stefanon B. Exosome cargo in milk as a possible marker of cow well being. J Dairy Res. 2020;87(S1):79–83.
Luo S, Solar X, Huang M, Ma Q, Du L, Cui Y. Enhanced neuroprotective results of epicatechin gallate encapsulated by bovine milk-derived exosomes in opposition to Parkinson’s illness by way of antiapoptosis and antimitophagy. J Agric Meals Chem. 2021;69(17):5134–43.
Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, Alhakeem SS, Oben Okay, Munagala R, Bondada S, et al. Milk-derived exosomes for oral supply of paclitaxel. Nanomed Nanotechnol Biol Med. 2017;13(5):1627–36.
Oliveira MC, Arntz OJ, Blaney Davidson EN, van Lent PL, Koenders MI, van der Kraan PM, van den Berg WB, Ferreira AV, van de Lavatory FA. Milk extracellular vesicles speed up osteoblastogenesis however impair bone matrix formation. J Nutr Biochem. 2016;30:74–84.
Oliveira MC, Di Ceglie I, Arntz OJ, van den Berg WB, van den Hoogen FH, Ferreira AV, van Lent PL, van de Lavatory FA. Milk-derived nanoparticle fraction promotes the formation of small osteoclasts however reduces bone resorption. J Cell Physiol. 2017;232(1):225–33.
Negahdaripour M, Owji H, Eskandari S, Zamani M, Vakili B, Nezafat N. Small extracellular vesicles (sEVs): discovery, capabilities, functions, detection strategies and numerous engineered varieties. Professional Opin Biol Ther. 2021;21(3):371–94.
Hata T, Murakami Okay, Nakatani H, Yamamoto Y, Matsuda T, Aoki N. Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun. 2010;396(2):528–33.
Shu SA, Yuen AWT, Woo E, Chu KH, Kwan HS, Yang GX, Yang Y, Leung PSC. Microbiota and Meals Allergy. Clin Rev Allergy Immunol. 2019;57(1):83–97.
Zhao M, Bozzato E, Joudiou N, Ghiassinejad S, Danhier F, Gallez B, Préat V. Codelivery of paclitaxel and temozolomide by way of a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. J Management Launch. 2019;309:72–81.
Du C, Wang Y, Shi Okay, Zhao M, Tu L, Yu Y, Li Z, Luo F, Qian Z. Environment friendly suppression of liver metastasis cancers by paclitaxel loaded nanoparticles in PDLLA-PEG-PDLLA thermosensitive hydrogel composites. J Biomed Nanotechnol. 2017;13(11):1545–56.
Pacelli S, Rampetsreiter Okay, Modaresi S, Subham S, Chakravarti AR, Lohfeld S, Detamore MS, Paul A. Fabrication of a double-cross-linked interpenetrating polymeric community (IPN) hydrogel floor modified with polydopamine to modulate the osteogenic differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces. 2018;10(30):24955–62.
Choi BY, Chalisserry EP, Kim MH, Kang HW, Choi IW, Nam SY. The Affect of Astaxanthin on the Proliferation of Adipose-derived Mesenchymal Stem Cells in Gelatin-Methacryloyl (GelMA) Hydrogels. Supplies (Basel, Switzerland). 2019;12(15):2416.
Rothrauff BB, Smith CA, Ferrer GA, Novaretti JV, Pauyo T, Chao T, Hirsch D, Beaudry MF, Herbst E, Tuan RS, et al. The impact of adipose-derived stem cells on enthesis therapeutic after restore of acute and continual huge rotator cuff tears in rats. J Shoulder Elbow Surg. 2019;28(4):654–64.
Hu H, Dong L, Bu Z, Shen Y, Luo J, Zhang H, Zhao S, Lv F, Liu Z. miR-23a-3p-abundant small extracellular vesicles launched from Gelma/nanoclay hydrogel for cartilage regeneration. J Extracell Vesicles. 2020;9(1):1778883.
Pieters BC, Arntz OJ, Bennink MB, Broeren MG, van Caam AP, Koenders MI, van Lent PL, van den Berg WB, de Vries M, van der Kraan PM, et al. Industrial cow milk incorporates bodily steady extracellular vesicles expressing immunoregulatory TGF-β. PLoS ONE. 2015;10(3): e0121123.
Mizuno M, Fujisawa R, Kuboki Y. Carboxyl-terminal propeptide of sort I collagen (c-propeptide) modulates the motion of TGF-beta on MC3T3-E1 osteoblastic cells. FEBS Lett. 2000;479(3):123–6.
Joshi MK, Lee S, Tiwari AP, Maharjan B, Poudel SB, Park CH, Kim CS. Built-in design and fabrication methods for biomechanically and biologically useful PLA/β-TCP nanofiber bolstered GelMA scaffold for tissue engineering functions. Int J Biol Macromol. 2020;164:976–85.
Grimston SK, Fontana F, Watkins M, Civitelli R. Heterozygous deletion of each sclerostin (Sost) and connexin43 (Gja1) genes in mice just isn’t ample to impair cortical bone modeling. PLoS ONE. 2017;12(11): e0187980.
Gindin Y, Jiang Y, Francis P, Walker RL, Abaan OD, Zhu YJ, Meltzer PS. miR-23a impairs bone differentiation in osteosarcoma by way of down-regulation of GJA1. Entrance Genet. 2015;6:233.
Talbot J, Brion R, Lamora A, Mullard M, Morice S, Heymann D, Verrecchia F. Connexin43 intercellular communication drives the early differentiation of human bone marrow stromal cells into osteoblasts. J Cell Physiol. 2018;233(2):946–57.
Zappitelli T, Chen F, Aubin JE. Up-regulation of BMP2/4 signaling will increase each osteoblast-specific marker expression and bone marrow adipogenesis in Gja1Jrt/+ stromal cell cultures. Mol Biol Cell. 2015;26(5):832–42.