Mitchison, J. M. Birefringence of Amœbæ. Nature 166, 313–314 (1950).
Beaufort, L., Barbarin, N. & Gally, Y. Optical measurements to find out the thickness of calcite crystals and the mass of skinny carbonate particles resembling coccoliths. Nat. Protoc. 9, 633–642 (2014).
Savage, N. Digital spatial gentle modulators. Nat. Photonics 3, 170–172 (2009).
Park, J., Lee, Okay. & Park, Y. Ultrathin wide-angle large-area digital 3D holographic show utilizing a non-periodic photon sieve. Nat. Commun. 10, 1304 (2019).
Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photonics 5, 343–348 (2011).
Muheim, R., Phillips, J. B. & Åkesson, S. Polarized gentle cues underlie compass calibration in migratory songbirds. Science 313, 837–839 (2006).
Demus, D. 100 years liquid crystal chemistry. Mol. Cryst. Liq. Cryst. Incorporating Nonlinear Choose. 165, 45–84 (1988).
Wei, W.-S., Xia, Y., Ettinger, S., Yang, S. & Yodh, A. G. Molecular heterogeneity drives reconfigurable nematic liquid crystal drops. Nature 576, 433–436 (2019).
Music, W., Kinloch, I. A. & Windle, A. H. Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302, 1363–1363 (2003).
Shen, T.-Z., Hong, S.-H. & Music, J.-Okay. Electro-optical switching of graphene oxide liquid crystals with a particularly giant Kerr coefficient. Nat. Mater. 13, 394–399 (2014).
Woltman, S. J., Jay, G. D. & Crawford, G. P. Liquid-crystal supplies discover a new order in biomedical purposes. Nat. Mater. 6, 929–938 (2007).
Kneissl, M., Seong, T.-Y., Han, J. & Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode applied sciences. Nat. Photonics 13, 233–244 (2019).
Kubota, Y., Watanabe, Okay., Tsuda, O. & Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric stress. Science 317, 932–934 (2007).
Taniyasu, Y., Kasu, M. & Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006).
Tudi, A., Han, S., Yang, Z. & Pan, S. Potential optical purposeful crystals with giant birefringence: current advances and future prospects. Coord. Chem. Rev. 459, 214380 (2022).
Xu, Z. & Sadler, B. M. Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Magazine. 46, 67–73 (2008).
Khan, A., Balakrishnan, Okay. & Katona, T. Ultraviolet light-emitting diodes primarily based on group three nitrides. Nat. Photonics 2, 77–84 (2008).
Wen, C.-H., Gauza, S. & Wu, S.-T. Ultraviolet stability of liquid crystals containing cyano and isothiocyanato terminal teams. Liq. Cryst. 31, 1479–1485 (2004).
Lan, T., Ding, B. & Liu, B. Magneto-optic impact of two-dimensional supplies and associated purposes. Nano Sel. 1, 298–310 (2020).
Ding, B. et al. Big magneto-birefringence impact and tuneable colouration of 2D crystal suspensions. Nat. Commun. 11, 3725 (2020).
Ding, B. et al. Largely tunable magneto-coloration of monolayer 2D supplies through measurement tailoring. ACS Nano 15, 9445–9452 (2021).
Lan, T. et al. Collective habits induced extremely delicate magneto-optic impact in 2D inorganic liquid crystals. J. Am. Chem. Soc. 143, 12886–12893 (2021).
Dai, S. et al. Tunable phonon polaritons in atomically skinny van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).
Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).
Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018).
Segura, A. et al. Pure optical anisotropy of h-BN: highest big birefringence in a bulk crystal by way of the mid-infrared to ultraviolet vary. Phys. Rev. Mater. 2, 024001 (2018).
Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an oblique bandgap semiconductor. Nat. Photonics 10, 262–266 (2016).
Watanabe, Okay., Taniguchi, T. & Kanda, H. Direct-bandgap properties and proof for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).
Wang, M., He, L., Zorba, S. & Yin, Y. Magnetically actuated liquid crystals. Nano Lett. 14, 3966–3971 (2014).
Eremin, A. et al. Peculiarities of the magneto-optical response in dispersions of anisometric pigment nano-particles. RSC Adv. 6, 80666–80669 (2016).
Peterlin, A. & Stuart, H. A. Über den Einfluß der Rotationsbehinderung und der Anisotropie des inneren Feldes auf die Polarisation von Flüssigkeiten. Z. Angew. Phys. 113, 663–696 (1939).
Taylor, E. W. & Cramer, W. Birefringence of protein options and organic programs. I. Biophys. J. 3, 127–141 (1963).
O’Konski, C. T., Yoshioka, Okay. & Orttung, W. H. Electrical properties of macromolecules. IV. Dedication of electrical and optical parameters from saturation of electrical birefringence in options. J. Phys. Chem. 63, 1558–1565 (1959).
Jennings, B. R., Wilson, S. R. & Ridler, P. J. Magnetic birefringence of minerals. J. Colloid Interface Sci. 281, 368–376 (2005).
Rah, Y., Jin, Y., Kim, S. & Yu, Okay. Optical evaluation of the refractive index and birefringence of hexagonal boron nitride from the seen to near-infrared. Choose. Lett. 44, 3797–3800 (2019).
Pakdel, A., Bando, Y. & Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 43, 934–959 (2014).
Hong, J., Jin, C., Yuan, J. & Zhang, Z. Atomic defects in two-dimensional supplies: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 29, 1606434 (2017).
Li, J.-M. Strong 2D room-temperature dilute ferrimagnetism enhancement in freestanding ammoniated atom-thin [0001] h-BN nanoplates. ACS Appl. Mater. Interfaces 9, 39626–39634 (2017).
Si, H. et al. Giant-scale synthesis of few-layer F-BN nanocages with zigzag-edge triangular antidot defects and investigation of the superior ferromagnetism. Nano Lett. 15, 8122–8128 (2015).